A pH meter is an electronic instrument used for measuring the pH (acidity or alkalinity) of a liquid (though special probes are sometimes used to measure the pH of semi-solid substances). A typical pH meter consists of a special measuring probe (a glass electrode) connected to an electronic meter that measures and displays the pH reading.
Contents |
The pH probe measures pH as the activity of hydrogen cations surrounding a thin-walled glass bulb at its tip. The probe produces a small voltage (about 0.06 volt per pH unit) that is measured and displayed as pH units by the meter. For more information about pH probes, see glass electrode.
The meter circuit is no more than a voltmeter that displays measurements in pH units instead of volts. The input impedance of the meter must be very high because of the high resistance — approximately 20 to 1000 MΩ — of the glass electrode probes typically used with pH meters. The circuit of a simple pH meter usually consists of operational amplifiers in an inverting configuration, with a total voltage gain of about −17. The inverting amplifier converts the small voltage produced by the probe (+0.059 volt/pH) into pH units, which are then offset by seven volts to give a reading on the pH scale. For example:
The two basic adjustments performed at calibration (see below) set the gain and offset of the inverting amplifier.
For very precise work the pH meter should be calibrated before each measurement. For normal use calibration should be performed at the beginning of each day. The reason for this is that the glass electrode does not give a reproducible e.m.f. over longer periods of time.
Calibration should be performed with at least two standard buffer solutions that span the range of pH values to be measured. For general purposes buffers at pH 4 and pH 10 are acceptable. The pH meter has one control (calibrate) to set the meter reading equal to the value of the first standard buffer and a second control (slope) which is used to adjust the meter reading to the value of the second buffer. A third control allows the temperature to be set. Standard buffer sachets, which can be obtained from a variety of suppliers, usually state how the buffer value changes with temperature.
For more precise measurements, a three buffer solution calibration is preferred. As pH 7 is essentially, a "zero point" calibration (akin to zeroing or taring a scale or balance), calibrating at pH 7 first, calibrating at the pH closest to the point of interest ( e.g. either 4 or 10) second and checking the third point will provide a more linear accuracy to what is essentially a non-linear problem. Some meters will allow a three point calibration and that is the preferred scheme for the most accurate work. Higher quality meters will have a provision to account for temperature coefficient correction, and high-end pH probes have temperature probes built in.
The calibration process correlates the voltage produced by the probe (approximately 0.06 volts per pH unit) with the pH scale. After each single measurement, the probe is rinsed with distilled water or deionized water to remove any traces of the solution being measured, blotted with a scientific wipe to absorb any remaining water which could dilute the sample and thus alter the reading, and then quickly immersed in another solution.
When not in use, the glass probe tip must be kept wet at all times to avoid the pH sensing membrane dehydration and the subsequent dysfunction of the electrode.
A glass electrode alone (i.e., without combined reference electrode) is typically stored immersed in an acidic solution of around pH 3.0. In an emergency, acidified tap water can be used, but distilled or deionised water must never be used for longer-term probe storage as the relatively ionless water "sucks" ions out of the probe membrane through diffusion, which degrades it.
Combined electrodes (glass membrane + reference electrode) are better stored immersed in the bridge electrolyte (often KCl 3 M) to avoid the diffusion of the electrolyte (KCl) out of the liquid junction.
Occasionally (about once a month), the probe may be cleaned using pH-electrode cleaning solution; generally a 0.1 M solution of hydrochloric acid (HCl) is used,[1] having a pH of about one.
In case of strong degradation of the glass membrane performance due to membrane poisoning, diluted hydrofluoric acid (HF < 2 %) can be used to quickly etch (< 1 minute) a thin damaged film of glass. Alternatively a dilute solution of ammonium fluoride (NH4F) can be used. To avoid unexpected problems, the best practice is however to always refer to the electrode manufacturer recommendations or to a classical textbook of analytical chemistry.
pH meters range from simple and inexpensive pen-like devices to complex and expensive laboratory instruments with computer interfaces and several inputs for indicator and temperature measurements to be entered to adjust for the slight variation in pH caused by temperature. Specialty meters and probes are available for use in special applications, harsh environments, etc.
The first commercial pH meters were built around 1936 by Radiometer in Denmark and by Arnold Orville Beckman in the United States. While Beckman was an assistant professor of chemistry at the California Institute of Technology, he was asked to devise a quick and accurate method for measuring the acidity of lemon juice for the California Fruit Growers Exchange (Sunkist). Beckman's invention helped him to launch the Beckman Instruments company (now Beckman Coulter). In 2004 the Beckman pH meter was designated an ACS National Historical Chemical Landmark in recognition of its significance as the first commercially successful electronic pH meter.[2]
In the 1970s Jenco Electronics of Taiwan designed and manufactured the first portable digital pH meter. This meter was sold under Cole-Parmer's label.
Because the circuitry of a basic pH meter is quite simple, it is possible to build a serviceable pH meter or pH controller with parts available at a neighborhood electronics retailer. (pH probes, however, are not so easily acquired and must usually be ordered from a scientific instrument supplier.) For a walkthrough of how to build the simplest possible pH meter or a detailed description of how to build a pH meter/pH controller, see The pH Pages. The application note for the LM6001 chip at the National Semiconductor web site also has a very simple demonstration circuit. Although the application note is for a specialty IC, serviceable pH meters can be built from any operational amplifier with a high input impedance, such as the common and inexpensive National Semiconductor TL082 or its equivalent.